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Fully coupled quantum mechanical scattering calculations and adiabatic uncoupled bound-state calculations
are used to identify Feshbach funnel resonances that correspond to long-lived exciplexes in the A˜ state of
NaH2, and the scattering calculations are used to determine their partial and total widths. The total widths
determine the lifetimes, and the partial widths determine the branching probabilities for competing decay
mechanisms. We compare the quantum mechanical calculations of the resonance lifetimes and the average
final vibrational and rotational quantum numbers of the decay product, H2(ν′, j′), to trajectory surface hopping
calculations carried out by various prescriptions for the hopping event. Tully’s fewest switches algorithm is
used for the trajectory surface hopping calculations, and we present a new strategy for adaptive stepsize
control that dramatically improves the convergence of the numerical propagation of the solution of the coupled
classical and quantum mechanical differential equations. We performed the trajectory surface hopping
calculations with four prescriptions for the hopping vector that is used for adjusting the momentum at hopping
events. These include changing the momentum along the nonadiabatic coupling vector (d), along the gradient
of the difference in the adiabatic energies of the two states (g), and along two new vectors that we describe
as the rotated-d and the rotated-g vectors. We show that the dynamics obtained from thed andg prescriptions
are significantly different from each other, and we show that thed prescription agrees better with the quantum
results. The results of the rotated methods show systematic deviations from the nonrotated results, and in
general, the error of the nonrotated methods is smaller. The nonrotated TFS-d method is thus the most accurate
method for this system, which was selected for detailed study precisely because it is more sensitive to the
choice of hopping vector than previously studied systems.

1. Introduction

Trajectory surface hopping1-20 (TSH) has become clearly
established as a practical method for studying electronically
nonadiabatic dynamics in molecular systems. One attractive
aspect of the method is that it is applicable even to complicated
polyatomic systems. Until recently, however, it was not possible
to evaluate the accuracy of the method because accurate
quantum mechanical dynamics calculations on electronically
nonadiabatic processes were intractable. Recently the situation
has changed, and we have begun to test TSH methods against
accurate quantal calculations.9,10,12,17-20 One goal of this work
is to delineate the reliability of TSH methods for various classes
of systems (strongly coupled, weakly coupled, bimolecular,
unimolecular, etc.), and another is to use what we learn to design
improved methods. In the present paper, we focus on electroni-
cally nonadiabatic unimolecular decay of long-lived excited-
state complexes (exciplexes) and we focus on the prescription
for the change in momentum during the hopping event.

One problematic aspect of TSH methods is that the potential
energy governing the internuclear motion changes discontinu-
ously during a hop, and a corresponding discontinuous change
in kinetic energy is required to conserve the total energy. This
is problematic because there is no formal prescription for the

method used to adjust the individual components of the kinetic
energy. Two common prescriptions are to adjust the component
of the momentum that lies along the nonadiabatic coupling
vector1,2

and to adjust the component of the momentum that lies along
the vector of the gradient of the differences in potential energy3,4

whereφi
a(x;R) and φj

a(x;R) are the adiabatic electronic states
between which the system switches during the hop,R is the
vector of nuclear coordinates,x is the vector of electronic
coordinates,∇R is the gradient with respect to nuclear coordi-
nates, andEi(R) andEj(R) are the adiabatic energies of states
φi

a(x;R) and φj
a(x;R) as functions ofR. The g prescription

(throughout this paper, we drop the subscripts and arguments
of d and g where it will not cause confusion; i.e.,g denotes
g12(R) andd denotesd12(R)) is computationally more conve-
nient, but thed prescription has been recommended by Tully5

and Stine and Muckerman,6 and it has been justified theoretically
on the basis of semiclassical theory.7,8 However, recent work
comparing thed andg hopping prescriptions for a variety of
systems9,10 showed no notable difference in results between
using the two methods. This was also reported earlier by Eaker.11

We can explain this in part by the fact that it has been shown
† University of Minnesota.
‡ NASA Ames Research Center.

dij(R) ) 〈φi
a(x;R)|∇Rφj

a(x;R)〉 (1)

gij(R) ) ∇R(Ei(R) - Ej(R)) (2)
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that thed andg vectors are parallel in systems with constant
diabatic coupling.12 Therefore, thed andg vectors are expected
to give similar results in any system in which the diabatic
coupling is approximately constant in the regions where most
nonadiabatic transitions occur. This does not explain all the
observed results, though, since it was also found4 that the final
state distributions are almost independent of the choice ofd
versusg in a system where thed and g vectors are nearly
perpendicular to each other. Thed and g vectors are also
expected to give similar results in any system with a small
average potential energy gap at hopping events, since in this
case the change in the kinetic energy is relatively small. A
systematic study of the differences in the dynamics observed
when using thed or g vector to adjust the momentum has never
been reported.

In this work, we present calculations on the unimolecular
decay of exciplexes. We use a realistic diabatic potential energy
matrix (NaH2 potential energy matrix 6)21 for which the diabatic
coupling is not constant at most geometries. Thed andg vectors
generally point in different directions in this system, including
the range of geometries where most surface hops occur. We
present converged quantum dynamics calculations and TSH
calculations carried out by Tully’s fewest switches5,15,16(TFS)
method over a range of initial states and energies.

A problem that occurs in both momentum-adjusting prescrip-
tions described above is the possibility that there may be
insufficient momentum along the vector to allow a hop. This
occurs only in transitions from a lower energy surface to a higher
energy surface. Suggested remedies for this problem include
simply ignoring the surface change13 or reversing the component
of the momentum along the hopping vector (d or g),3 as if a
step function in the potential surface had been encountered. In
both cases, the trajectory remains on the same surface. In the
TFS method, the undesirable consequence of either of these
procedures is that the correct ensemble-averaged electronic
populations are not maintained. This is because surface hops
and associated electronic state switches are enforced to maintain
the correct populations in an ensemble-averaged sense. The hops
must occur where there is a local change in the probability of
being on the current potential energy surface. Once the correct
hopping position has been passed, there is no mechanism to
allow a correction for inadequate tracking. Thus, in the TFS
method, it is important that the correct populations always be
maintained. In this paper, we examine the dynamical conse-
quences of allowing thed or g vector to rotate in order to allow
surface transitions to occur and to reduce the number of
momentum-prohibited hops. The TFS calculations were per-
formed with thed prescription (TFS-d) and theg prescription
(TFS-g) and with two new prescriptions called rotatedd and
rotatedg.

2. System

The process we consider is electronic predissociation, i.e.,
the unimolecular decay of an electronically excited-state
complex to ground-electronic-state fragments, in particular,

where the left-hand side represents an exciplex,κ is the initial
electronic state (κ ) 1 is the electronic ground state,X̃, andκ

) 2 is the first excited state, A˜ ), νl (l ) 1, 2, or 3) are the
quantum numbers for the H2 stretch, the symmetric Na-H2

stretch, and the asymmetric Na-H2 bend, respectively, andν′
andj′ are the final vibrational and rotational quantum numbers

of H2. We consider values ofV2 in the range 0-6. Note that
the Ã state corresponds formally to Na(3p) complexed to H2,
whereas the repulsive X˜ state corresponds to Na(3s)+ H2. In
this work, we neglect spin-orbit coupling and electronic angular
momentum. We consider only states with zero total angular
momentum. We use a two-state diabatic potential energy matrix
(NaH2 potential energy matrix 6)21 for all of the calculations.
Analytical derivatives for this potential matrix were calculated
using theADIFOR22 PROGRAM.

A schematic diagram of the diagonal matrix elements atC2V
geometries is shown in Figure 1. In this figure and elsewhere,
we use the following three Jacobi coordinates:S(distance from
Na to H2), s (distance from H to H), andø (the angle between
the Na-to-H2 center and H2 axis). Throughout this paper, the
zero of energy corresponds to Na(3s) infinitely far from the
H2 diatom. The well in the excited state surface in Figure 1 is
the exciplex, also called a funnel.23,24 In Figure 1, it can be
seen that the crossing of the diabats occurs at energies slightly
higher than the asymptotic Na(3p)+ H2 energy. Note that five
of the energies occur above the asymptotic Na(3p)+ H2 energy
and are not classically bound.

The vibrational quantum numbers of each of the three
exciplex modes, listed together, are used as a shorthand notation
throughout this paper. For example, 000 refers to the lowest
energy exciplex state and 100 refers to the state which has one
quanta of energy in the H2 vibrational mode.

3. Quantum Mechanical Theory

We used accurate quantum mechanical scattering calculations
to locate and characterize the predissociating states. These states
show up in scattering calculations as electronic Feshbach
resonances.25 We will call them Feshbach funnel resonances.26

The methods we used to locate and characterize these kinds of
states were described in earlier work.26,27 We summarize the
process here.

The eigenphase sum,∆(E), is defined by

whereS(E) is the scattering matrix andE is the total energy at

NaH2(κ ) 2, ν1 ) 0, ν2, ν3 ) 0) f Na(3s)+ H2(ν′, j′) (3)

Figure 1. Schematic diagram of cuts through the potential energy
surfaces of the first two diabatic states of the NaH2 system as a function
of S(distance from Na to H2). For this figure,s (distance from H to H)
was optimized for each value ofS. The geometries shown haveC2V
symmetry, for which the diabatic and adiabatic representations are
identical and for which the diabatic coupling is zero. The electronic
symmetry of the ground diabatic state,X̃, is A1, and the electronic
symmetry of the first excited diabatic state,Ã, is B2. The long-dashed
line at 2.373 eV represents the zero-point energy of H2 + Na(3p). The
short-dashed line represents the classical asymptotic Na(3p)+ H2

energy without zero-point energy. The short solid lines represent the
energies of funnel resonances.

exp(2i∆(E)) ) detS(E) (4)
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which S(E) and ∆(E) are calculated. This formula only
determines∆(E) to within a multiple ofπ. In order to obtain
∆(E) as a smooth function of energy, multiples ofπ were added
where necessary for continuity. We use the notation∆(E) to
indicate eigenphase sums calculated from eq 4 and smoothed
by addition of multiples ofπ.

According to the multichannel analogy of the Breit-Wigner
formula, in the region of an isolated narrow resonance, the
eigenphase sum is given approximately by28

where∆b(E) is the background contribution to the eigenphase
sum,ΓR is the total width of the resonance,ER is the resonance
energy, and the arctan is always chosen to be the branch between
0 andπ (not-π/2 toπ/2). Our goal is to fit eq 5 to the quantum
mechanical∆(E) values to determineΓR and ER. We expand
∆b(E) in a polynomial of the energy

whereP is the order of the polynomial. We fit eq 5 with the
substitution (6) to the accurate data∆acc(Ek) at NE pointsEk by
minimizing the following quantity:27

Our general procedure was to select a value ofP and to
minimize eq 7 with respect toΓR, ER, andal. We then increased
P and repeated the process. We typically found thatΓR andER
were stable with respect to the variation ofP in the region of
the optimal value ofP. Figure 2 shows a plot of∆fit (Ek),
∆acc(Ek), and the background and resonance components of
∆fit(Ek) versusE.

Once we had determinedΓR andER, we calculated the partial
widths according to the formula29-32

where

andSn′n(Ek) is an approximation toSn′n (an element ofS(E)),
Sn′n

b (Ek) is the background scattering contribution toSn′n(Ek),
andγRn andγRn′ are partial widths describing decay from the
resonanceR into then andn′ channels, respectively.Sn′n

b (Ek) is
expanded in a polynomial as a function of energy:

whereP′ is the order of the polynomial. Multiplying byE - zR
gives

where

and

Note that all of the polynomial coefficients given above are
complex.

The quantityCRn′n is determined by fitting eq 8 to an entire
column of theS matrix by minimizing the following quantity:

where the summation is over all of the open channels,Nc. Once
CRn′n is determined,γRn′ andγRn are calculated from

In practice, we fit alln columns of theS(E) matrix, and we
report data from the column that had the largest partial width.
A more detailed description of the procedure for fitting partial
widths is given in earlier work.26,27

We define the probability of decay of resonanceR into
channeln as

where

Figure 2. Smoothed eigenphase sums as functions of energy in the
region of a resonance. The solid diamonds represent quantum mechan-
ical eigenphase sums, smoothed by addition of multiples ofπ. The
solid line represents the fit to these points. The dotted line represents
the background contribution to the eigenphase sum, and the short dashed
line represents the resonance contribution to the eigenphase sum.

zR ) ER - i
ΓR

2
(9)

Sn′n
b (Ek) ) ∑

j)0

P′

Ajn′nEk
j (10)

(E - zR)Sn′n ) ∑
j)0

P′+1

Bjn′nE
j (11)

BP′+1,n′n ) AP′n′n (12)

Bjn′n ) An-1,n′n - zRAjn′n j ) 1, 2, ...,P′ (13)

B0n′n ) -zRA0n′n - iCRn′n (14)

CRn′n ) γRn′γRn (15)

εn
2 ) ∑

n′)1

Nc [∑k

|Snn′ - Snn′(Ek)|2

NE - P′ ]1/2

(16)

γRn′ )
CRn′n

xCRnn

(17)

PRn )
|γRn|2
GR

(18)

GR ) ∑
n)1

Nc

|γRn|2 (19)

∆(E) ) ∆b(E) + arctan( ΓR

2(ER - E)) (5)

∆b(E) ) ∑
l)0

P

alE
l (6)

δ2 )
1

NE - P - 2
∑
k)1

NE

[∆fit(Ek) - ∆acc(Ek)]
2 (7)

Sn′n(Ek) ) Sn′n
b (Ek) - i

γRn′γRn

Ek - zR
(8)
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GR equalsΓR for an isolated narrow resonance, but for the
resonances, we consider thatGR tends be slightly smaller than
ΓR.

The final average vibrational and rotational quantum numbers
for the decay products of each exciplex are given in terms of
the decay probabilities as follows:

where the summation is over all open channels andν′n and j′n
are the vibrational and rotational quantum numbers of channel
n, respectively. The subscriptR on 〈ν′〉 and on〈 j′〉 labels the
resonance.

The mean lifetime for a resonance is given by31-34

where the subscriptR again labels the resonance.

4. Computational Methods

4.1. Quantum Mechanical Scattering.The accurate quantum
mechanical calculations were carried out by the hybrid basis
set outgoing wave variational principle (OWVP)35,36 using
version 18.5 of theVP computer code.37 Table 1 lists the basis
set parameters for two different basis sets. These parameters
are described in full detail in an earlier paper,36 and we give a
brief summary of these parameters in Table 2. Basis set I was
used for all of our OWVP calculations. Basis set II is a larger
basis set, and it was used to check the level of convergence of
basis set I. We performed calculations at a range of energies
with both basis sets, and we compared the state-to-state transition
probabilities at each energy. A summary of the convergence is
shown in Figure 3. Shown are the number of transition
probabilities in each range of magnitude and the relative
convergence for that group. At 2.030 eV, the transition
probabilities larger than 1× 10-6 are all converged to within
1-2%. At 2.232 eV, the basis set is slightly less well-converged.
Most of the transition probabilities larger than 1× 10-5 are
converged to within 2-5%, and about half of them are
converged to within 1%. Note that the energies shown in Figure
3 correspond to the locations of resonances. It is difficult to
converge the quantum calculations with respect to the basis set
size and with respect to numerical parameters at these energies
because of the notorious sensitivity of scattering calculations
to all parameters near a resonance. Calculations at energies that
do not correspond to the location of resonances are converged
to an even higher degree.

We checked the convergence of〈V′〉 and〈 j′〉 by performing
a series of calculations in the neighborhood of the resonance at
2.232 eV with basis set II and comparing these results to
calculations obtained with basis set I. Table 3 illustrates the
differences between these calculations, and it illustrates the effect
of using different parameters for the fit of the partial widths
described in section 3. It can be seen that the average final
vibrational and rotational quantum numbers are stable with
respect to a change in these parameters and that they are
converged with respect to the basis set.

We need eigenphase sums over a range of energies in order
to locate resonances by the method described in section 3. The
spacing of the energies needs to be about a half of the width of

〈ν′〉R ) ∑
n

PRn ν′n (20)

〈 j′〉R ) ∑
n

PRn j′n (21)

τR ) p
ΓR

(22)

TABLE 1: Basis Set Parameters for OWVP Calculations

basis set

parameter I II

jmax(κ ) 1, ν ) 0) 24 26
jmax(κ ) 1, ν ) 1) 22 24
jmax(κ ) 1, ν ) 2) 20 22
jmax(κ ) 1, ν ) 3) 17 19
jmax(κ ) 1, ν ) 4) 15 17
jmax(κ ) 1, ν ) 5) 12 14
jmax(κ ) 1, ν ) 6) 8 10
jmax(κ ) 1, ν ) 7) 2 4
jmax(κ ) 1, ν ) 8) 4
jmax(κ ) 2, ν ) 0) 18 20
jmax(κ ) 2, ν ) 1) 16
Vmax

a (κ ) 1) 7

jmax
vib (κ ) 1) 21

Va
max(κ ) 2) 10 11

jmax
vib (κ ) 2) 22 24

∆vib(κ ) 1) 0.18
∆vib(κ ) 2) 0.16 0.16
wvib(κ ) 1) 0.3
wvib(κ ) 2) 0.3 0.33
∆S(κ ) 1, all ν) 0.120 0.120
∆S(κ ) 2, all ν) 0.132 0.132
∆S(κ ) 2, all νa) 0.132 0.132
∆S(κ ) 1, all νa) 0.217
c(κ ) 1, all ν) 0.48 0.44
c(κ ) 1, all νa) 0.96131
c(κ ) 2) 0.74 0.70
sl

vib(κ ) 1) 2.46

su
vib(κ ) 1) 3.54

sl
vib(κ ) 2) 1.040 0.960

su
vib(κ ) 2) 2.480 2.560

Sl
G(κ ) 1, all ν) 2.816 2.756

Su
G(κ ) 1, all ν) 8.936 8.996

Sl
G(κ ) 1, all νa) 2.888

Su
G(κ ) 1, all νa) 5.709

Sl
G(κ ) 2, all ν) 2.312 2.246

Su
G(κ ) 2, all ν) 9.44 9.506

Sl
G(κ ) 2, all νa) 2.312 2.246

Su
G(κ ) 2, all νa) 10.76 10.826

m1
g, m1

e (all ν) 52 53

m1
a(all νa) 14

m2
g, m2

e (all ν) 55 56

m2
a(j e 9, νa) 65 (1-7) 66 (1-8)

m2
a(j e 9,) 55 (8-10) 56 (9-11)

m2
a(j > 9, νa) 55 (1-10) 56 (1-11)

εk 12 14
εt 100 100
εrad 14 16
εB 12 14
εW 12 14
N(HO) 80 90
NQGLV 80 80
NQV 720 800
NQA 150 200
sl

QV 0 0

su
QV 5.0 5.5

NFD 15 15
N(F) 1825 2140
S0

F 1.0 0.8

SN(F)+1
QV 40.0 45.0

NQGL 7 7
NQS 255 300
NSD 40 40
f SD 0.9 0.9
Sl

QR 1.0 0.8

Su
QR 30.0 35.0
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the resonance (or smaller) in order for the resonance to appear
on a plot of the eigenphase sums. The region over which
resonances might be expected to occur can be calculated from
the difference in energy between the Na(3p)+ H2(0,0) channel
and the NaH2 000 state. Since the zero-point energy of the NaH2

exciplex is roughly equal to the zero-point energy of H2, the
energy range over which we need calculations is approximately
equal to the depth of the exciplex well relative to the Na(3p)+
H2 asymptote, which is about 0.4 eV. It would therefore require
calculations at about 800 energies to search this entire range
for resonances whose widths are about 1 meV.

In order to reduce the number of calculations required for
the search, we tried two different methods to predict the location
of resonances before carrying out the scattering calculations.
First, we attempted to estimate the location of the resonances
by making the separable-mode approximation and solving three
independent one-dimensional problems. We calculated one-
dimensional slices of the potential energy surface at the bottom
of the exciplex along the three Jacobi coordinates. We then fit
these slices to one-dimensional Morse curves, and we solved
for the quantum energy levels.

Unfortunately, the uncoupled procedure was not accurate
enough to predict the resonance energies. As can be seen by
examining Figure 2, resonances are essentially invisible at
energies that differ by as little as 10 meV from the center of
the resonance, and the predictions given by the separable
approximation are larger than this.

The second procedure we used proved to be much more
effective. This procedure consisted of performing variational
bound-state calculations on the uncoupled upper adiabatic energy
surface. These calculations included all potential energy coupling

between the nuclear coordinates, they used the Jacobi coordi-
nates for Na+ H2, and they used the exact kinetic energy
operator. The program used is described elsewhere.38 The
calculations are straightforward, except that difficulties were
encountered when evaluating the radial integrals over the
potential because the potential is not sufficiently smooth. Thus,
rather than using a single Gaussian-like quadrature to evaluate
the radial integrals, the integration region was divided into 10
intervals, each having its own quadrature.39 In order to improve
the convergence of the energy levels with high Na+ H2

stretching quantum numbers, we enclosed the potential in a soft
box by adding a steep repulsive potential starting at 9 a0.39

Figures 4-6 show plots of the wave-function density for the
000, the 010, and the 020 states of the single-surface calcula-
tions. Note the trend of the density extends to largerSdistances
with higher vibrational excitation.

We found a resonance with the OWVP calculations to
correspond to each resonance predicted by the bound-state
calculations. A comparison of the OWVP-calculated energies
of each resonance with the bound-state predictions is given in
Table 4. We made the state assignments as follows. The 000
state must correspond to the resonance in the even-symmetry
calculations at the lowest energy, which was 2.030 eV. The
resonance at 2.184 eV was the lowest energy resonance in the
odd-symmetry calculations. Therefore, this resonance corre-
sponds to the 001 state. The resonance at 2.093 eV could
correspond to the excitation of either the H2 stretch or the Na-
H2 stretch. Since the H2 stretch has a higher frequency, we assign
the 010 state to the resonance at 2.093 eV. The resonances at
2.147, 2.193, 2.232, 2.267, and 2.296 eV show energy spacings
consistent with progressive 0n0 excitation. We also note a

TABLE 2: Description of Scattering Basis Set Parameters Used in Table 1

parameter description

jmax(κ, ν) max rotational quantum number for thisκ, ν
νmax

a (κ) max number of vibrational distributed Gaussians for thisκ

jmax
vib (κ) max rotational level associated with each vibrational distributed Gaussian for thisκ

∆vib(κ) spacing of the vibrational distributed Gaussians in unscaled coordinates for thisκ
wvib(κ) width parameter for the vibrational distributed Gaussians for thisκ
∆S(κ, ν) spacing of the translational distributed Gaussians for thisκ, ν (or νa)
c (κ, ν) overlap parameter for the translational distributed Gaussians for thisκ, ν (or νa)
sl

vib(κ) center of the first vibrational distributed Gaussian, for thisκ

su
vib(κ) center of the last vibrational distributed Gaussian, for thisκ

S1
G(κ, V) center of the first translational distributed Gaussian, for thisκ, ν (or νa)

Su
G(κ, ν) center of the last translational distributed Gaussian, for thisκ, ν (or νa)

mκ
x(ν, j) total number of translational distributed Gaussians perν, j (or νa, j) channel assigned to surfaceκ, basis function type x

(x ) g (half-integrated Green’s function), e (asymptotic eigenstate function), or a (vibrationally distributed
Gaussian functions)

εk vibrational screening parameter
εt translational screening parameter
εrad radial screening parameter
εB screening parameter involving theB matrix
εW screening parameter involving theW matrix
N(HO) number of harmonic oscillator basis functions used to expand the diatomic adiabatic vibrational eigenfunctions
NQGLV number of quadrature points per repetition used in the Gauss-Legendre quadrature over the vibrational coordinate
NQV total number of quadrature points used in the Gauss-Legendre quadrature over the vibrational coordinate
NQA number of points in the Gauss-Legendre quadrature used for angular integrals
s1

QV lower limit on the vibrational quadrature grid
su

QV upper limit on the vibrational quadrature grid
NFD number of points used in the finite difference representation of the second-derivative operator
N(F) number of finite difference grid points
S0

F small-Sfinite difference boundary condition point
SN(F)+1

QV large-Sfinite difference boundary condition point
NQGL number of radial quadrature points per repetition of Gauss-Legendre quadrature
NQS number of repetitions of Gauss-Legendre quadrature over the radial coordinate
NSD number of additional points at the end of the finite difference grid where step size decrease occurs
f SD step size decrease factor
S1

QR lower limit on the quadratures over the radial variableS
Su

QR upper limit on the quadratures over the radial variableS
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progressive change in the lifetimes and final average quantum
numbers for these resonances. We therefore assigned the 020-
060 states to them.

The resonance at 2.273 eV could correspond to either the
100 state or the 002 state. The largest coefficient of the bound-
state basis functions at this energy is only 0.532, and therefore,
making an assignment based on the character of the bound-
state wave function is difficult. The dynamical information from
the OWVP calculations is more suggestive. The total width for
this state is small, and it is similar in size to the width of the
resonance corresponding to the 001 state. Classically, we might
think of the bending motion as moving the system away from
the C2V geometries where the conical intersection occurs and,
therefore, prolonging its life. Quantum mechanically, we expect
the wave function to have a significant part of its density at
non-C2V geometries. We assigned the 002 state to the resonance
at 2.273 eV for this reason. We expect the resonance corre-
sponding to the 100 state to have a much shorter lifetime, since
motion along the H2 vibrational coordinate would tend to bring
the system across the conical intersection. The resonance at
2.302 eV is a good candidate by this criteria. Also, the final
vibrational moment of the decay products of the resonance at
2.302 eV is larger than the vibrational moments of the other
resonances’ decay products. This is consistent with the idea that
the wave function describing a semibound state with H2

vibrational excitation will have a large overlap with ground-
state basis functions that have high vibrational quantum
numbers. On the basis of these dynamical considerations, we
assigned the 100 state to the resonance at 2.302 eV.

We note that the difference between the OWVP calculations
of ER and the bound-state calculations ofER is the “shift” of
Feshbach theory.40

4.2. Trajectory Surface Hopping.All trajectories are carried
out in the adiabatic representation.

4.2.1. Selection of the Initial Conditions. The initial
conditions for the trajectory calculations were chosen to
correspond to particular resonance states located by our OWVP
calculations. We assigned quasiclassical energies to each mode
according to the following scheme:

Figure 3. Number of transition probabilities that fell into each range
of magnitude. The shading indicates the degree of convergence: white
indicates convergence to 1%, black dots indicate convergence to 2%,
gray indicates convergence to 5%, and solid black indicates convergence
worse than 5%.

TABLE 3: Convergence of the Decay Probabilities and
Final Average Rotational and Vibrational Quantum
Numbers for the Resonance at 2.232 eV

row ν′ j′ standarda O(P) ) 5 column 9 basis set II

1 0 0 6.39× 10-4 6.34× 10-4 6.39× 10-4 6.40× 10-4

2 0 2 3.12× 10-3 3.09× 10-3 3.12× 10-3 3.12× 10-3

3 0 4 6.31× 10-3 6.35× 10-3 6.31× 10-3 6.32× 10-3

4 0 6 2.17× 10-2 2.17× 10-2 2.17× 10-2 2.17× 10-2

5 0 8 7.21× 10-2 7.19× 10-2 7.21× 10-2 7.22× 10-2

6 1 0 4.75× 10-4 4.84× 10-4 4.75× 10-4 4.70× 10-4

7 1 2 2.85× 10-2 2.85× 10-2 2.85× 10-2 2.85× 10-2

8 1 4 1.59× 10-2 1.61× 10-2 1.59× 10-2 1.59× 10-2

9 0 10 1.49× 10-1 1.47× 10-1 1.49× 10-1 1.49× 10-1

10 1 6 2.43× 10-2 2.43× 10-2 2.43× 10-2 2.44× 10-2

11 1 8 2.20× 10-3 2.24× 10-3 2.20× 10-3 2.23× 10-3

12 2 0 3.80× 10-1 3.83× 10-1 3.80× 10-1 3.80× 10-1

13 0 12 6.12× 10-3 6.28× 10-3 6.12× 10-3 6.13× 10-3

14 2 2 1.22× 10-1 1.20× 10-1 1.22× 10-1 1.22× 10-1

15 2 4 1.29× 10-2 1.33× 10-2 1.29× 10-2 1.29× 10-1

16 1 10 7.44× 10-4 7.42× 10-4 7.44× 10-4 7.25× 10-4

17 2 6 6.72× 10-4 6.60× 10-4 6.71× 10-4 6.57× 10-4

18 0 14 3.13× 10-2 3.07× 10-2 3.13× 10-2 3.12× 10-2

19 2 8 1.47× 10-3 1.47× 10-3 1.47× 10-3 1.48× 10-3

20 3 0 1.62× 10-2 1.67× 10-2 1.62× 10-2 1.56× 10-2

21 1 12 9.53× 10-3 9.62× 10-3 9.53× 10-3 9.54× 10-3

22 3 2 3.96× 10-3 4.07× 10-3 3.96× 10-3 3.84× 10-3

23 3 4 1.11× 10-4 1.10× 10-4 1.11× 10-4 1.07× 10-4

24 0 16 7.33× 10-2 7.48× 10-2 7.33× 10-2 7.36× 10-2

25 2 10 1.79× 10-3 1.83× 10-3 1.79× 10-3 1.79× 10-3

26 3 6 3.63× 10-4 3.64× 10-4 3.63× 10-4 3.62× 10-4

27 1 14 1.36× 10-2 1.34× 10-2 1.36× 10-2 1.37× 10-2

28 3 8 1.54× 10-4 1.56× 10-4 1.54× 10-4 1.54× 10-4

29 4 0 1.53× 10-3 1.57× 10-3 1.53× 10-3 1.54× 10-3

30 2 12 2.21× 10-5 2.23× 10-5 2.21× 10-5 2.20× 10-5

31 4 2 2.67× 10-6 2.75× 10-6 2.67× 10-6 2.63× 10-6

〈ν′〉 1.202 1.205 1.202 1.200
〈j′〉 4.849 4.840 4.849 4.857

a A fourth-order polynomial fit to the column of theS matrix with
the largest partial width (column 12). Basis set I was used in theS
matrix calculation. Each of the other columns deviate from the standard
method in the order of the polynomial (O(P)), the column used in the
fit, or the basis set used in the calculation of theS matrix.

Figure 4. Plot of the wave-function density of the 000 bound state on
the excited adiabatic potential surface. The potential energy contours
(solid lines) are shown for 2.0, 2.5, ..., 5.0 eV. The dashed contours
represent the wave-function density.

Eν1
) f1EZPE (23)
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whereEZPE is the quantal zero-point energy,E(ν1,ν2,ν3) is the
quantal energy of theν1ν2ν3 state, andEνl is the quasiclassical
energy in model. Note that the quantal energies are already
calculated from OWVP calculations by the method of section
3. The quantitiesflEZPE (l ) 1, 2, or 3) are a partition of the
zero-point energy into each mode according to the size of the
first excitation energy of that mode. Note that this partitioning
is somewhat arbitrary and other partitioning methods could be
considered; however, we chose this method because it does not
depend on any assumptions about the potential (e.g., that it is
well approximated by a Morse curve), but it is still formally
correct in the ideal case of three totally independent harmonic
oscillators.

Once we had partitioned the total energy into each of the
three vibrational modes, we partitioned each modal energy into
potential energy and kinetic energy components by randomly
selecting the vibrational phase of each mode. Since the three
vibrational modes are not exactly separable, this prescription
resulted in trajectories with a distribution of total energies. In
order to make the energy of each trajectory equal toE(ν1,ν2,ν3),
we scaled the momentum along each mode by a factor
[E(ν1,ν2,ν3) - V)/(Eνi - V)]1/2, whereV is the potential energy.
In cases whereV was greater thanE(ν1,ν2,ν3), we set the
momentum to zero and we adjusted the coordinates along the
negative gradient ofV by the smallest amount necessary to make
the energy of the trajectory equal toE(ν1,ν2,ν3).

4.2.2. TFS Methods.It is convenient to label the Na atom
as A and the H atoms as B and C. Integration is carried out in
a six-dimensional coordinate space consisting of the three-vector
S from A to the center of mass of BC and the three-vectors
from B to C. It is convenient to carry out part of the calculations
in mass-weighted coordinates defined by

where

mX is the mass of atom X, and the momentapY are conjugate
to the coordinatesY. Note that the vectorsq, Q, s, S, pq, pQ,
ps, andpS are all in three-dimensional space.

For some purposes, it is useful to combine the three-vectors
into six-vectors. For example, we define

Note that we have defined the nonadiabatic coupling vector
dij(R) in eq 1 and the gradient in eq 2 as six vectors in the
same mass-scaled coordinate space asR.

We define a general unit vectorĥ, which is a six-vector, along
which the momentum (pR) of the trajectory is adjusted when
hopping to conserve the total energy. We performed TFS
calculations with four prescriptions for choosing this direction.
Each prescription corresponds to a different version of the TFS
method. Two of the vectors we used to adjust the momentum
are the previously discussedd andg vectors. The calculation
of d andg is summarized in Appendix A. The two new vectors
are the rotated-d (rot-d) and rotated-g (rot-g) vectors, which
we describe next.

In the remainder of this discussion, we examine methods for
employing rotated vectors for surface hops from a lower energy
surface to a higher energy surface (i.e., up hops), which are the
only kinds of hops that can suffer from insufficient total energy

Eν2
) f2EZPE + E(0,ν2,0) - E(0,0,0) (24)

Eν3
) f3EZPE (25)

f1 )
E(1,0,0)- E(0,0,0)

E(1,0,0)+ E(0,1,0)+ E(0,0,1)- 3E(0,0,0)
(26)

f2 )
E(0,1,0)- E(0,0,0)

E(1,0,0)+ E(0,1,0)+ E(0,0,1)- 3E(0,0,0)
(27)

f3 )
E(0,0,3)- E(0,0,0)

E(1,0,0)+ E(0,1,0)+ E(0,0,1)- 3E(0,0,0)
(28)

f1 + f2 + f3 ) 1 (29)

Q ) xuA,BCS (30)

q ) xuBCs (31)

pQ ) pS /xuA,BC (32)

pq ) ps /xuBC (33)

µA,BC )
mA(mB + mC)

mA + mB + mC
(34)

µBC )
mBmC

mB + mC
(35)

Figure 5. Plot of the wave-function density of the 010 bound state on
the excited adiabatic potential surface. Contours are the same as for
Figure 4.

Figure 6. Plot of the wave-function density of the 020 bound state on
the excited adiabatic potential surface. Contours are the same as for
Figure 4.

R ) (qQ ) (36)

pR ) (pq

pQ
) (37)
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or insufficient momentum along the hopping vector. Initially,
ĥ points along eitherd or g, and we label this initial vectorĥ0.
The amount of kinetic energy associated with the momentum
along ĥ0 is given by

We note that mass does not appear in eq 38 since we are using
mass-weighted momenta and mass-weighted coordinates. Ap-
pendix B shows how to decomposepR into a componentpvib

associated with the internal vibrational momentum and a
componentprot associated with the external rotational momen-
tum. By using that decomposition, we rewrite eq 38 as

which reduces to

sinceĥ0 depends only on the internal coordinates of the system.
We defineθ0 as the angle betweenĥ0 andpvib and substitute it
into eq 40, giving

Equation 41 is an expression for the kinetic energy that is
available for a surface hop as a function of the angle between
the initial hopping vector and the internal vibrational momentum.
Equation 41 indicates that the largest amount of kinetic energy
available for a surface hop is

and that this maximum energy will only be available when the
vibrational momentum is parallel to the hopping vector.

We define the adiabatic energy gap (Egap) by

and we note that the total kinetic energy is given by

We can then distinguish four possible situations in which up
hops may be attempted:

Case I corresponds to an allowed hop, case II to a momentum-
forbidden hop, case III to an angular-momentum-forbidden hop,
and case IV to an energy-forbidden hop. The rotated-vector
method is concerned only with case II. In the rotated-vector
method, we generalize eq 41 by allowing the hopping vector to
be perturbed by an angleθrot so that the available kinetic energy
is equal to the energy gap

It can be shown that this perturbed (rotated) vector is given in
terms ofĥ0 and p̂vib by

A value ofθrot equal to zero describes a vector identical toĥ0,
while a value ofθrot equal toθ0 describes a vector parallel to
pvib. Note thatθrot can be negative; a value ofθrot equal toθ0

- π describes a vector that points in the direction of-pvib. We
choose the smallest absolute value ofθrot that satisfies eq 49.
Note that changing the momentum along the vectornĥ conserves
the total angular momentum, sincepvib and the momentum along
ĥ0 have no angular momentum components. If, however, eqs
49 and 50 were derived withp̂R instead of withp̂vib, then the
resulting rotated hopping vector would have a component along
p̂rot, and changing the momentum along this rotated hopping
vector would not conserve the total angular momentum.

4.2.3. Integration Scheme.Each integration step requires
the integration of 21 coupled equations. These include the set
of 12 Hamilton equations of motion for a 3-body system in
Jacobi coordinates, the real and imaginary parts of the prob-
ability amplitudes for both potential energy surfaces, the action
integral of each surface, and 3 more equations that required our
implementation of the TFS method; these last 3 equations are
discussed below.

The probability of a surface hop was calculated after each
integration step. The calculation of the hopping probabilities
will be discussed later in this section. If this probability was
greater than a random number chosen in the interval [0,1], we
checked to see whether we were in case I, II, III, or IV of the

TABLE 4: Comparison of Bound-State Calculations and OWVP Calculations

OWVP adiabatic bound state

Ra ER,b eV ΓR, meV υ1
c υ2

c υ3
c ER - E0 eV 〈ν′〉 〈j′〉 ER, eV ER - E0, eV

0 2.030 1.442 0 0 0 0.000 0.82 8.34 2.030 0.000
1 2.093 1.279 0 1 0 0.063 0.74 7.69 2.094 0.064
2 2.147 1.385 0 2 0 0.117 0.84 7.25 2.148 0.118
3 2.184 0.608 0 0 1 0.154 1.85 5.67 2.184 0.154
4 2.193 1.222 0 3 0 0.163 1.09 5.67 2.194 0.164
5 2.232 1.116 0 4 0 0.202 1.20 4.85 2.233 0.203
6 2.267 1.020 0 5 0 0.237 1.30 4.32 2.268 0.238
7 2.273 0.522 0 0 2 0.243 1.35 8.82 2.273 0.243
8 2.296 0.848 0 6 0 0.266 1.34 3.73 2.297 0.267
9 2.302 2.871 1 0 0 0.272 2.41 2.98 2.304 0.274

a Resonance.b Energy of resonance.c Exciplex vibrational modes.

Thop
0 ) 1

2
(pR‚ĥ0)

2 (38)

Thop
0 ) 1

2
(pvib‚ĥ0 + prot‚ĥ0)

2 (39)

Thop
0 ) 1

2
(pvib‚ĥ0)

2 (40)

Thop
0 ) 1

2
pvib

2 cos2 θ0 (41)

Thop
max ) 1

2
pvib

2 (42)

Egap(R) ) E2(R) - E1(R) (43)

T ) 1
2

pR
2 (44)

I: Egap(R) e Thop
0 (45)

II: Thop
0 < Egap(R) e Thop

max (46)

III: Thop
max < Egap(R) e T (47)

IV: T < Egap(R) (48)

∆Egap) 1
2

pvib
2 cos2(θ0 - θrot) (49)

ĥ )
sin(θ0 - θrot)

sin θ0
ĥ0 +

sin θrot

sin θ0
p̂vib (50)
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previous section. If we were in case I, then a hop occurred and
the kinetic energy was adjusted along the hopping vectorĥ0. If
we were in case II and the rot-d or the rot-g prescription was
being used, then a hop occurred and the kinetic energy was
adjusted alongĥ. If we were in case II and thed or the g
prescription was being used, then no hop occurred and the
component of momentum alongĥ0 was reversed. If we were in
case III or in case IV, a hop did not occur. In case III, the
momentum alongĥ0 was reversed, while in case IV no change
to the momentum was made. Our motivation for treating
trajectories that attempt linear and angular momentum prohibited
hops differently from trajectories that attempt energy-prohibited
hops is that the former may be thought of as reflecting off a
step in the potential surface that they encounter as they hop
up,3,10while the latter lack the energy to make a transition. After
a successful hop, we took an additional integration step before
again checking for a hop.

In our calculations, we used a Bulirsch-Stoer (BS) integra-
tor41 with polynomial extrapolation, as in earlier work.17 In order
to make the following discussion clearer, we briefly describe
this integrator. The BS integrator takes a large step of sizeH
that is composed of many smaller modified midpoint41 steps.
The BS integrator first steps through the intervalH with the
modified midpoint integrator using a fixed step size ofH/2.
We label the result of this calculationf2. The BS integrator then
steps through the intervalH again using a fixed step size of
H/4; we label the result of this calculationf4. The quantitiesf2
andf4 are fit to a polynomial as a function of step size, and the
value of the polynomial at zero step size is labeledg1. This is
the BS integrator’s first estimate of the integrated equation. To
calculate the error ing1, the intervalH is divided into six steps;
the result of this calculation is labeledf6. The quantitiesf2, f4,
and f6 are again fit to a polynomial as a function of step size,
and the value of this new polynomial at zero step size is labeled
g2. If the difference betweeng2 and g1 is smaller than the
tolerance parameterεBS, then the integrator takesg2 as its final
value and it proceeds to the next step. Otherwise, the integrator
continues dividingH into smaller and smaller segments, fitting
these results to polynomials and extrapolating to zero step size.
Should the difference between estimatesg7 andg8 be greater
thanεBS, the integrator decides thatH is too large and it starts
again with a smaller interval,H/2. Should a value ofH/2 ever
become smaller than an input parameter,hmin, then the interval
is simply taken with the modified midpoint integrator in two
steps. Note that the criteria for accepting a step depends upon

the difference between subsequent values ofgi andgj, differing
by less thanεBS for all of the equations being integrated. Thus,
if a particular equation is difficult to integrate, all of the
remaining equations will be integrated with smaller step sizes.

The Bulirsch-Stoer integrator proved to be very accurate.
We generally obtained energy conservation to within 10-9 eV,
and we obtained angular momentum conservation to within 10-9

p at a tolerance of 5× 10-13. Note thatεBS is given in the
same units as the quantity being integrated, i.e.,εBS has units
of a0 for the integration of coordinates, and it has units ofp/a0

for the integration of momenta. At a larger tolerance of 10-9,
we obtained energy and angular momentum conservation to
within 10-6 eV and 10-7 p, respectively. Despite this, we had
difficulty converging the final average vibrational and rotational
quantum numbers with respect toεBS. Figures 7 and 8 show
these values for calculations at 2.030 eV using the TFS-d
method as a function ofεBS. Notice that the average vibrational
quantum number as calculated by method I steadily increases
with decreasing tolerance, while the average rotational quantum
number as calculated by method I decreases with decreasing
tolerance (method II is a more accurate integration method
which will be discussed below). A clue to this behavior was
found in a plot of the average time of the first hop, which is
shown in Figure 9. Note that trajectories hop earlier as the
tolerance is decreased. The energy and angular momentum are
still converged to a small degree in these calculations. This
suggests that the lack of stability of〈V′〉 and 〈j′〉 is not an
integrator error but that it is an error in the method used to
calculate surface hopping probabilities.

The method we first attempted to use to calculate surface
hopping probabilities is the implementation of the TFS method
recommended for large time steps:42

Figure 7. Final average vibrational quantum number versus the
integrator toleranceεBS. The squares linked by solid lines represent
calculations with the standard integration method, called method I. The
diamonds linked by dashed lines represent calculations with a modified
integration scheme called method II. Both methods are discussed in
section 4.2.3. The error bars indicate 1 standard deviation.

Figure 8. Final rotational moment versus the integrator toleranceεBS.
The symbols are the same as for Figure 7.

Figure 9. Time of the first surface hop versus the integrator tolerance
εBS. The symbols are the same as for Figure 7.
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wheregkj is the probability of a surface transition from statek
to statej, ∆t is an interval of time,akk(t) is the probability of
being in statek at time t, and

whereajk is the electronic coherence between statesj and k.
Note that we follow Tully’s original method and never reset
the electronic coherence during the calculation of a trajectory.5

For a two-state system,

and

and the hopping probabilities become

and

Note that only one ofg21 or g12 can be positive; the negative
valued hopping probability is set to zero.

The TFS method requires small steps, since it is based on
the time derivative of the electronic state probabilities. The BS
integrator, however, is designed to take large steps. There is
thus a mismatch between these two components. Figure 10
shows a plot of the functiona22(t) calculated in two different
ways. The open circles represent steps taken during the course
of integratingb21(t) with the BS integrator described above. This
is called method I. The solid lines are drawn to connect the
circles. The pluses represent the results of integratingb21(t) in
a fashion that required it to take small steps near extrema in
a22(t) (zeros inb21(t)). This method will be discussed below,
and it is called method II. The dashed lines are drawn to connect
the pluses in Figure 10. Note that the two methods agree; the
locations of the open circles always occur on the dashed lines.
The difference is that method I is able to accurately take larger
steps. This allows it to partially bypass the peaks and valleys
in the electronic probabilities. These extrema are probably well-
approximated by second-order polynomials, which the modified
midpoint integrator can integrate exactly. It can thus cross the
peaks without reducing the intervalH. This is an efficient
method of integration, but it results in an incorrect calculation
of the hopping probability. Consider the interval labeled bya
and b in Figure 10. According to eq 55, the probability of
hopping from surface 2 to surface 1 with method I over the
interval ab is (0.998 54- 0.998 48)/0.998 54) 6.0 × 10-5.
On the other hand, if we integrate the trajectory with method
II, the integrator must first step to a pointb′, for example. The
probability of hopping is different. The probability for hopping
over the intervalab′ is (0.998 54- 0.997 89)/0.998 54) 6.5
× 10-4, and the probability of hopping over the intervalb′b is
zero. These calculations differ by an order of magnitude. Note
that the hopping probability calculated by method I is smaller

than the probability calculated by method II; the effect of
integrating through the peaks and the valleys with method I is
to smooth the changes in the electronic probabilities, which
reduces the calculated hopping probabilities. We should point
out that the TFS method is formally independent of step size.
In the example given above, the state populations at timeb for
both methods should be identical, since in method II some of
the trajectories on the lower surface that hopped down in the
intervalab′ should hop back up in the intervalb′b. In actuality,
trajectories on the lower electronic surface need not follow the
same paths that trajectories on the excited surface do, and in
the present example, trajectories that reach the lower surface
tend to rapidly dissociate instead of remaining in the interaction
region and hopping back up.

In a typical system, this small error in the calculation of the
hopping probabilities would not tend to result in a systematic
error in the final trajectory attributes. However, in the current
system, there are two characteristics that exacerbate this error.
First, the nonadiabatic coupling vector is never large, so the
electronic probabilities change by only a small amount during
the trajectories lives. For example, in calculations with the
TFS-d method at 2.030 eV, the average probability for being
on the upper surface at the end of a trajectory was 0.91. Second,
the energy of the trajectory in the 000 and 010 states is
insufficient to allow it to dissociate on the upper electronic
surface. In order to dissociate, trajectories in these states must
quench. These trajectories typically spent a long time in the
exciplex before hopping. For example, using the TFS-d method
at 2.030 eV, the lifetime of the trajectories was 0.59 ps, while
the total integration time was 0.90 ps. These long times
combined with small probability changes seem to make the
trajectories more sensitive to small errors in the hopping
probability.

DecreasingεBS makes the peaks slightly less well-ap-
proximated by a second-order function, so the integrator cannot
take as large a step through it. This reduces the error in the
hopping probabilities, and it explains the trends of the final
trajectory attributes withεBS as shown in Figures 7-9.
Ultimately, decreasing the tolerance should result in converged
final quantities. This brute force method is unattractive for
several reasons. First, this is an indirect method for obtaining
convergence of the hopping probabilities. The trajectories
converge slowly with respect toεBS, as evidenced in Figures
7-9. The computational effort required to converge these
quantities with respect toεBS is very large. We reiterate that
the accuracy of the integrator is not an issue here; the error in

gkj )
∫t

t+∆t

dtbjk(t)

akk(t)
(51)

bjk(t) ) -2 Re(ajk
/R4 ‚djk) (52)

b12(t) ) ă11(t) (53)

b21(t) ) ă22(t) (54)

g21 )
a22(t) - a22(t + ∆t)

a22(t)
(55)

g12 )
a11(t) - a11(t + ∆t)

a11(t)
(56)

Figure 10. a22(t) versus time. The open circles linked by solid lines
represent values obtained through integration ofb21(t) by method I.
The pluses linked by dotted lines represent values obtained through
integration ofb21(t) with method II.
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the hopping probability occurs between successive integration
steps. Second, decreasing the tolerance means that the integrator
must integrate all of the remaining equations more accurately.
This could force the integrator to use small step sizes even in
regions whereb21(t) is not changing rapidly. Finally, it should
be mentioned that the error in the calculation of the hopping
probability is not limited to the BS integrator but that this error
will occur in any high-order adaptive step size integrator. Since
these integrators in general will have different criteria for
adjusting their step sizes, it is important to find a general method
that is widely applicable.

A subtle alternative is to prohibit the integrator from stepping
over peaks and valleys in the electronic probabilities. We
accomplished this by dividing the quantitybjk(t) in eq 51 into
positive and negative components and then integrating them
separately:

This is called method II. The integral overbjk
+(t) in eq 59 is a

function that either increases with time or remains constant with
time, but it never decreases with time. Similarly, the integral
overbjk

-(t) in eq 59 is a function that never increases with time.
Thus, neither peaks nor valleys appear in either of the integrals
in eq 59. The functionsbjk

+(t) andbjk
-(t) are continuous every-

where, but all of their derivatives are discontinuous whenbkj(t)
equals zero. The BS integrator has difficulty in its extrapolation
step when it crosses this point. Consequently, it reduces the
step size in this region, as is evidenced by the clustering of
points near the extrema in Figure 10. The improved convergence
obtained with this method is illustrated in Figures 7-9 by dotted
lines. We note that any other high-order adaptive step size
integrator will also have difficulties stepping through points
where bkj(t) is zero, and therefore, eqs 57-59 are generally
applicable.

We should point out that although it may be more straight-
forward to converge fixed-step integrators with respect to step
size than to converge variable step size integrators, we have
found that the current system requires very small fixed step sizes
and that the BS integrator with the adaptive step size control is
more efficient. For systems with larger changes inbkj(t), the
adaptive step size modification is unnecessary, and it is clear
that in this case variable step size integrators will be even more
efficient. Apart from efficiency issues, an important aspect of
the adaptive step size control described above is that it frees
the TFS method from integrator dependence, even for systems
with small hopping probabilities.

For our final calculations, we used values ofεBS equal to 5
× 10-13 andhmin equal to 10-4 a0. Twenty-eight percent of all
the trajectories at all energies took steps smaller thanhmin with
the TFS-d method. These trajectories took an average of 1.6
modified midpoint steps.

In addition to converging the final trajectory attributes with
respect to the numerical parametersεBS andhmin, we converged
them with respect to the number of trajectories we calculated.
We calculated the statistical error by performing 10 000
trajectory calculations at each energy and with each of the 4
trajectory methods. We then randomly divided each group of

10 000 trajectories into 4 sets of 5000 trajectories (by consider-
ing the first 5000, the second 5000, the odd 5000, and the even
5000), and we calculated the standard deviation from the mean
for the average final vibrational and rotational quantum numbers
and for the lifetimes for each of the 4 groups. Table 5 presents
the standard deviation averaged over all seven energies for each
method. This table implies that 10 000 trajectories is sufficient
for meaningful results.

We also checked the convergence of〈V′〉, 〈j′〉, and τ with
respect to the final separation between Na and H2 when we
stopped integrating the trajectory. Na and H2 must have a
separation large enough that there are no interactions between
them in order for the final state analysis to be correct. To test
that this criterion was being satisfied, we performed a set of
10 000 trajectories with the TFS-d method at 2.03 eV, and we
ended the integration at separations of 10, 15, and 20 Å. Neither
〈V′〉, 〈j′〉, nor τ showed dependence on this parameter. For our
final calculations, we ended the integration when the final
separation was larger than 15 Å.

All of our TSH calculations were carried out in the adiabatic
representation, as recommended by Tully.15,16

5. Results

We calculated the accurate quantum mechanical probabilities
for an H2 molecule in theV ) 0, j ) 10 state and in theV ) 0,
j ) 2 state to collide with Na(3s) and experience a transition to
anyV′ ) 2 state as a function of energy. This is shown in Figure
11. Note the appearance of resonances corresponding to the
formation of NaH2 exciplexes.

For the TFS methods, the histogram method,10,43 linear
smooth sampling (LSS) method,10,43-46 and quadratic smooth
sampling (QSS)10,47method were used to assign final vibrational
and rotational states. We found that the differences between
these three methods were negligible, and therefore, we present
only the histogram results.

In all of the semiclassical calculations, we only included
trajectories that finished on the lower surface. All seven of the
energies we studied are lower than the zero-point energy of Na-
(3p) + H2(0,0). However, since we do not enforce the zero-
point energy, five of the trajectory calculations (those beginning

bjk
+(t) ) max[bjk(t),0] (57)

bjk
-(t) ) min[bjk(t),0] (58)

gkj )
∫t

t+∆
dtbjk

+(t) + ∫t

t+∆
dtbjk

-(t)

akk(t)
(59)

Figure 11. Quantum mechanical probability of a transition from the
Na(3s)+ H2(0,j) state to any Na(3s)+ H2(2,j′) states. The solid line
indicatesj ) 10, and the dotted line indicatesj ) 2.

TABLE 5: Average Statistical Uncertainty in the Calculated
Values

TFS-d rotated TFS-d TFS-g rotated TFS-g

〈ν〉 0.013 0.016 0.014 0.011
〈j〉 0.052 0.064 0.066 0.048
τ, ps 0.006 0.019 0.007 0.015
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in the 020-060 states) produce products on the excited potential
energy surface. We neglect trajectories that do not quench, since
we are interested in comparing our results to quantum mechan-
ical calculations, which of course cannot dissociate on the upper
surface. Figure 12 illustrates the quenching probability as a
function of energy.

After assigning probabilities for final states with integral
quantum numbers to all trajectories, we used these probabilities
to calculate the final average vibrational and rotational quantum
numbers for the product H2(V′,j′) for each batch of trajectories.
These averages are defined in eqs 20 and 21. Figures 13 and
14 show plots of 〈V′〉 and 〈j′〉, respectively, for all four
semiclassical methods and compares them to the accurate
quantum mechanical calculations. We also calculated the
average final relative energy of the products for each batch of
trajectories. Figure 15 shows the average final relative energy
of the products for each of the semiclassical calculations.

We obtained the lifetimes of the resonances from our quantum
mechanical calculations according to eq 22. In order to obtain
the corresponding quantities from our TSH calculations, we first
calculated the delay time48 for each trajectory, which is a
measure of the amount of time two particles interact with other.
Let T(F′,E) be the amount of time it takes for an exciplex with
energyE to decay into products Na(3s)+ H2(V′,j′) moving at
a final relative velocity ofν′rel to reach a separationF′. The
quantityF′/ν′rel is approximately the time it would have taken
two noninteracting particles to travel the same distance. The
difference of these two times, in the limit of infinite separation,
is the delay time:

This definition is different than in earlier work9,17,49in that the
initial velocity and distance is not present in the limit in eq 59.
This is because we are performing calculations for a unimo-
lecular decay reaction rather than for a bimolecular collision.

In order to determine the lifetimes of the semiclassical
unimolecular decay states, we plotted the number of undecayed
exciplexes versus the delay time on a semi-log plot. This plot
shows noise for large delay times because there are only a few
undecayed exciplexes remaining. For small delay times, the
decay is not expected to be statistical. Therefore, we fit the
center third of the distribution to a straight line as a function of
the delay time. The negative inverse of the slope of this line
givesτ, the lifetime of the exciplex. We note that this definition
of the lifetime is the appropriate one for comparison to the
lifetime given by eq 22; it can be shown thatτ is the mean
lifetime for exponential decay.34 Figure 16 shows the semiclas-
sical mean lifetimes and compares them to the calculated
quantum mechanical lifetimes.

Table 6 presents the overall root-mean-square (RMS) errors
for the four semiclassical methods for each of the four quantities
we calculated: the average final vibrational and rotational
quantum numbers, the mean lifetimes, and the final average
relative energies. The absolute RMS error is defined as

and the relative RMS error is defined as

where the average in both cases is over the seven resonance
energies.

Figure 12. Quenching probability versus energy. The thick black line
represents the quantum results. Squares representd methods; triangles
representg methods. Solid symbols represent nonrotated methods, and
open symbols represent rotated vector methods.

Figure 13. Final average vibrational quantum number versus the total
energy. Symbols are the same as in Figure 12.

Figure 14. Final average rotational quantum number versus the total
energy. Symbols are the same as in Figure 12.

Figure 15. Average final relative energy versus the total energy.
Symbols are the same as in Figure 12.

Errabs) x〈(error)2〉 (61)

Errrel ) x〈 (error)2

(accurate quantum mechanical value)2〉 (62)

td(F′,E) ) lim
F′f∞

[T(F′,E) - F′/ν′rel] (60)
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We examined the hopping events of the semiclassical methods
in more detail in order to describe trends that appear in the final
product distributions as the energy is increased. Figure 17
illustrates the average locations of hops for the TFS-d method
and for the TFS-g method. Figure 18 illustrates the distribution
of energy changes in the three vibrational modes at the time of
hopping for the TFS-d and TFS-g methods at 2.030 eV. Figure
19 illustrates theŵ and ŷ components ofd andg (defined in
Appendix B) versus energy. At each energy, these components
were calculated atSands values corresponding to the average
hopping location. For this plot,ø was chosen to be equal to
80°, since the vectord is undefined whenø equals 90°. Figure

20 shows a plot of the average energy gap during a hop; Figure
21 shows a plot of the average kinetic energy at the time of a
hop.

We also examined the rotated method in detail. In particular,
we are interested in how the rotated vector methods differ from
their nonrotated counterparts. Figure 22 shows the percentage
of trajectories that experienced one or more rotations of the
hopping vector. Figure 23 shows the average angle the hopping
vector needed to be rotated in order to allow a hop.

6. Discussion

The semiclassical methods will be unable to predict the
characteristic resonance behavior illustrated, for example, in
Figure 11. Presumably, semiclassical predictions of these
collisional transition probabilities would be a smoothly changing
function of energy that would be an average of the resonant
behavior shown in Figure 11. However, Figure 11 illustrates
that at certain energies Na(3s) and H2(V,j) may form quasi-bound
exciplexes that serve to redistribute energy between vibration
and rotation. With this interpretation of the resonance behavior,
we model the decay of the exciplexes directly by beginning
the semiclassical calculations in the intermediate quasi-bound
states. In a sense, we bypass the purely quantum aspect of these
resonances, which is that these exciplex states are quantized
and are only formed at particular energies. We ask three
questions of these trajectory calculations. First, which method
does the best at describing the quantum mechanics calculations?
Second, when the TFS-d and TFS-g methods differ substantially,
why do they differ? Third, what effect does the rotation of the
hopping vector have on final trajectory quantities?

Examination of Figures 13 and 14 shows that the TFS-d and
rotated TFS-d methods do better than the TFS-g and rotated
TFS-g methods do at describing the trend of〈V′〉 and〈j′〉 with

Figure 16. Mean lifetime versus the total energy. Symbols are the
same as in Figure 12.

TABLE 6: Semiclassical RMS Errors in the Mean Lifetime,
in the Final Vibrational Moment, in the Final Rotational
Moment, and in the Average Final Relative Energy for
Potential Matrix 6 a

TFS-d rotated TFS-d TFS-g rotated TFS-g

absolute RMS Errors
τ, ps 0.28 0.30 0.26 0.26
〈ν′〉 0.27* 0.23* 0.89 1.20
〈j′〉 1.40* 2.15* 3.15 3.90
〈Erel〉, eV 0.17* 0.24* 0.13* 0.22*

relative RMS Erros
τ, ps 43 55 39 44
〈ν′〉 32* 24* 105 36
〈j′〉 32* 46* 42 55
〈Erel〉, eV 18* 25* 14* 23*

a Bold numbers indicate the lowest error for each of the four
quantities. Asterisks indicate calculations in which the quantum
mechanical trend of the quantity with energy is reproduced by the
semiclassical method.

Figure 17. Average hopping location as a function ofSands. In this
plot, ø is equal to 90°, which is the angle of the average hop. Solid
squares represent TFS-d calculations, and solid triangles represent
TFS-g calculations.

Figure 18. Distributions of the change in energy along each mode
during hops for the TFS-d and TFS-g methods. Solid lines represent
the TFS-d method, and dotted lines represent the TFS-g method.
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the total energy. The TFS-g and rotated TFS-g methods give
final average quantum numbers that are nearly independent of
energy.

All of the semiclassical methods correctly describe the trend
of the quantum mechanical relative energies to increase with
increasing total energy (Figure 15). The TFS-g method has the
smallest error, and the TFS-d method is slightly higher than
this. The rotated methods both show a decreased amount of
average final relative energy than their nonrotated counterparts.

None of the TFS methods show the same trend of the lifetime
to increase as a function of energy as the quantum methods.
This is probably related to the zero-point energy of the Na(3p)

+ H2(0,0) channel, which opens at 2.373 eV. The classical
methods do not enforce zero-point energy, so above 2.104 eV,
where the classical Na(3p)+ H2 asymptote becomes energeti-
cally accessible, some trajectories dissociate on the upper surface
rather than hop. The incorrect trend ofτ with energy is also
related to the hopping probabilities, which tend to be very small.
Trajectories are more likely to dissociate on the upper surface
long before a hop occurs, if energy permits. It can be seen in
Figure 12 that only a small fraction of the trajectories quench
at high energies. If zero-point energies were enforced, however,
higher energy trajectories would be prevented from dissociating,
and they would hop down after oscillating on the upper surface
for some time. These trajectories would then add their longer
decay times to the population, and the calculated mean lifetimes
should increase. We have not tested this prediction.

For the 000 and 010 states, however, zero-point-energy
conservation does not have such a pronounced effect. If we
consider only these two states, it is clear that the rotated methods
predict a lifetime that is too high.

Table 6 summarizes the absolute errors of the semiclassical
methods and their ability to reproduce the trends that the
quantum mechanical calculations show. All of the methods
reproduce the trend of the average final relative energy to
increase with increasing total energy. The TFS-g method has
the lowest error in the calculation of the average final relative
energy, but the error of the TFS-d method is only slightly larger.
The TFS-d and rotated TFS-d methods are the only methods
that correctly describe the trends of the average vibrational and
rotational quantum numbers with energy. The absolute errors
of these two methods for the final vibrational quantum numbers

Figure 19. ŷ and ŵ components ofd̂ and ĝ versus energy. Solid
symbols represent thed̂ vector, and open symbols represent theĝ vector.
Diamonds represent theŷ component, and triangles represent theŵ
component. At each energy,d̂ and ĝ were calculated at a geometry
near the average hopping location. In this plot,Sands are equal to the
average values ofSandsduring hopping events. The angleø, however,
is not set equal to 90°, which is the average hopping value ofø, but is
instead set equal to 80°.

Figure 20. Average energy gap between the two adiabatic surfaces at
hopping events. Symbols are the same as in Figure 12.

Figure 21. Average kinetic energy at hopping events. Symbols are
the same as in Figure 12.

Figure 22. Fraction of trajectories that experienced one or more
hopping vector rotation. Open squares represent the rotated TFS-d
method; open triangles represent the rotated TFS-g method.

Figure 23. Average value of the angle of vector rotation for those
trajectories that experienced at least one rotation. The symbols are the
same as for Figure 21.
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are comparable, but the TFS-d method has a much smaller error
in the average final rotational quantum number. None of the
methods reproduces the trend of the final lifetime, and all of
the errors are roughly comparable. For these reasons, we believe
that the nonrotated TFS-d method is the best method for this
system.

An examination of the hopping events may indicate how the
differences in the final products result. In Figure 17, we can
see that as energy is increased, both the TFS-g and TFS-d
methods show similar changes in the average hopping location.
This similarity indicates that the hopping location alone is not
sufficient to account for the different dynamics observed with
each method.

The difference in the final product distribution can be
understood by examining the changes in momentum during the
hopping event. In Figure 15, we see that thed vector tends to
have the largest component alongŵ, while theg vector has the
largest component alongŷ. This explains why the TFS-g method
and the rotated TFS-g method show a much higher〈V′〉 and a
much lower〈j′〉 than the TFS-d method and the rotated TFS-d
method do. Neither the TFS-d method nor the TFS-g method
shows much change in energy alongŶ.

The trends of〈V′〉 and〈j′〉 with energy shown in Figures 13
and 14 are likely caused by a change in the orientation of the
d andg vectors with geometry. This is illustrated in Figure 19.
Note that the largest component of thed vector lies alongŵ
and that this component becomes smaller as the energy
increases. This correctly describes the trend illustrated by the
TFS-d calculations in Figure 14, which shows that the average
rotational quantum number decreases as the energy increases.
The component of thed vector alongŷ, on the other hand,
increases. This agrees with the trend of the TFS-d method shown
in Figure 12, which shows that the average vibrational quantum
number increases as the energy decreases. The components of
the g vector remain relatively independent of energy, which
agrees with the trends of the TFS-g method illustrated in Figures
13 and 14. It thus appears that in this system, the final energy
distributions are determined by the orientation of the hopping
vectors at the moment of hopping.

This suggests that the redistribution of internal energy by the
exciplex is negligible by comparison. One might wonder, for
example, whether trajectories that spent a longer amount of time
in the exciplex prior to hopping systematically accumulated
energy in any particular vibrational mode. We investigated this
possibility by dividing our batches of 10 000 trajectories into 3
groups according to the time of their first surface hop. We
calculated〈V′〉 and〈j′〉 for each group, and we discovered that
there was no correlation between how long trajectories spent
in the exciplex prior to the first hop and the final energy
distribution. The large average energy gap at the moment of
hopping is probably the reason for this. As seen in Figures 20
and 21, the average energy gap is about 1.0 eV, while the
amount of kinetic energy prior to a hop is only about 0.25 eV.
Tully has suggested that the ratio of these two energies is an
indication of how accurate TSH methods might be.50 In this
situation, it seems to indicate how sensitive the final products
will be to the method used to adjust the momentum during the
hopping event. Other systems with smaller average energy gaps
may show less dependence on the choice of vector used to adjust
the momentum at the moment of hopping. Thus, in earlier
studies,9,10 it is possible that thed vector and theg vector pointed
in different directions but that the small energy gap at hopping
events made this difference negligible.

The rotated vector methods show many systematic differences
from the nonrotated methods. For example, the rotated TFS-d
method predicts a systemic increase in〈j′〉 from the nonrotated
TFS-d prediction, while the rotated TFS-g method predicts a
systematic decrease in〈j′〉 and an increase in〈V′〉 from the
nonrotated TFS-g prediction. The rotated methods also seem
to shift the final average relative energy to lower values. We
can understand these trends in terms of Figure 18. For example,
if a rotated TFS-d trajectory hops to a lower energy surface,
roughly 1.0 eV of the potential energy is converted into kinetic
energy in the rotational coordinate, according to Figure 18. If,
at a later time, this trajectory attempts a hop with insufficient
momentum alongd, this probably indicates that the energy
which had recently been deposited in the rotational mode has
become partitioned into mostly potential energy. By rotating
thed vector, we allow the kinetic energy in other modes to be
used to hop up. At a later time, the trajectory will again hop
down and more kinetic energy will be added into the rotational
mode. Thus, rotating the hopping vector has the effect of taking
energy out of modes that are not associated with the nonrotated
hopping vector and adding that energy into modes that are
associated with the nonrotated hopping vector. In Figures 13
and 14, we see that the rotated TFS-g method has added energy
into the vibrational mode and removed it from the rotational
mode. The rotated TFS-d method, on the other hand, has added
energy to the rotational mode and removed it from the
translational coordinate, as can be seen in Figures 13 and 15.
We can see in Figures 22 and 23 that a larger number of
trajectories experience momentum prohibited hops in this system
and also that thed or g vector is rotated by a fairly large angle
when these hops occur. The strong effect that rotation has in
this system is probably related to the large energy gap during
hopping events.

The rotated vector methods also show systematic trends that
seem less dependent on the choice of hopping vector. The
increase in the mean lifetime and the decrease in quenching
probability over the nonrotated methods are two examples. In
both cases, the effects stem from the small hopping probabilities
in the current system. The lifetime is increased because
trajectories that hop back to the excited surface will spend a
long time trapped in the exciplex before hopping again. At
higher energies, trajectories that hop back up are more likely
to dissociate on the excited surface rather than hop back down,
and as a result, the quenching probabilities decrease.

These effects are likely to worsen if energetically forbidden
surface hops are allowed to occur. In the TFS-d calculations at
2.032 eV, for example, 85% of the trajectories experienced at
least one energy-prohibited hop, and the average number of
energy-prohibited hops was 3.8. On the other hand, only 32%
of the trajectories experienced at least one momentum-prohibited
hop, and the average number of momentum prohibited hops
was 1.3. Correcting the energy problem might drastically
increase the lifetime at low energies and decrease the quenching
probability at higher energies. In these cases, it is possible that
hops should not have occurred in the first place. It could be a
shortcoming in the quantum path equations that the electronic
probabilities change in regions where hops cannot occur. This
may suggest a strategy of building the energy criteria and the
momentum criteria into the quantum path equations themselves,
instead of devising methods to correct hopping failures.

As a final note, we reiterate the features in this system that
make accurate semiclassical calculations difficult. The electronic
probabilities change by a very small amount over the life of
the trajectories. Thus, the hopping probability at each integration
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step is very small and is more sensitive to errors. Second, the
low-energy trajectories spend a long time in the exciplex before
dissociating, causing these errors in the hopping probability to
accumulate. Third, zero-point energy is not conserved, and
higher energy trajectories can dissociate without quenching on
the upper surface. Finally, the final products seem to be very
sensitive to the direction that the hopping vector points, due to
the large energy gap in this system. Despite these difficulties,
the semiclassical calculations show qualitative agreement with
quantum mechanical calculations.

7. Concluding Remarks

We have presented quantum mechanical scattering calcula-
tions at energies associated with NaH2 exciplex resonance states.
These calculations provide the total and partial widths of the
resonances, and they allow the determination of their lifetimes
and of the final average rotational and vibrational numbers of
the products of decay. We have used trends in the energy
spacings, lifetimes, and product-state distributions to assign the
resonances. We compared these results with trajectory surface
hopping calculations employing Tully’s fewest switches algo-
rithm with four different directions for adjusting the momentum
at the time of a hop (this direction is called the hopping vector).
The TFS-d method (which uses the prescription originally
suggested by Preston and Tully) and the TFS-g method (which
uses the prescription originally suggested by Blais and Truhlar)
give very different results. The two other methods, TFS rotated-d
and TFS rotated-g, are new in this paper. It is shown that the
TFS-d and the rotated TFS-d methods describe the trends in
〈V′〉 and〈j′〉 with energy much better than the TFS-g or rotated
TFS-g methods do. None of the four methods correctly describes
the trend of the lifetimes with energy. The rotated-vector
methods show several systematic changes in the computed final
quantities from their nonrotated counterparts, and rotation of
the hopping vector has a strong effect on the energy distribu-
tions. Nevertheless, although rotation provides a solution to the
coupled nuclear-electronic dynamics that preserves the self-
consistency of the ensemble averages better than not rotating,
it does notsystematicallyimprove the calculated values of
physical observables. In fact, the strong systematic changes
caused by rotation tend to increase the average errors, and
therefore we believe the nonrotated TFS-d method is the best
method for the present system. This is the first time we have
found a system where the results of choosing thed and g
directions of the hopping vector are different. Hence, this
provides the first numerical evidence that either method is
superior to the other.

We have also presented an adaptive integration scheme for
the TFS method that allows hopping probabilities to be
calculated more accurately. This adaptive integrator is essential
for systems like the present one, which has very small changes
in the electronic probabilities.
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Appendix A

This appendix summarizes the numerical methods used to
calculated12(R) andg12(R). In the calculation of both of these
vectors, only the diabatic potential matrix elementsU11(R), U12-
(R), andU22(R) and their gradients are required.

We calculate the nonadiabatic coupling vector between two
adiabatic statesφ1

a(x;R) and φ2
a(x;R) with the Hellmann-

Feynman expression

which gives

whereHel(x;R) is the electronic Hamiltonian and the adiabatic
energiesE1(R) andE2(R) are given by

where

We expand the adiabatic wave functions in a diabatic basis

Substituting eqs A3 and A4 into eq A2 and recognizing that
the gradient of the diabatic wave functions is zero (by assump-
tion1,51,52) gives

Here, U11(R) and U22(R) are the diagonal diabatic potential
matrix elements andU12(R) is the off-diagonal diabatic coupling
element. The diabatic wave-function coefficients and the
adiabatic energies are determined by diagonalizing the diabatic
potential energy matrix. The gradients of our analytical diabatic
potential matrix elements were derived with the Adifor algo-
rithm.

The gradient of the differences in adiabatic potential energies
is defined by

Substituting eqs A3-A6 into eq A10 gives a result that can be
simplified to

Appendix B

In order to decomposepR into pvib andprot, we define five
new unit vectors as follows:

∇R 〈φi
a(x;R)|Hel(x;R)|φj

a(x;R)〉 ) 〈φi
a(x;R)|∇RHel(x;R)|

φj
a(x;R)〉 - [Ej(R) - Ei(R)]〈φi

a(x;R)|∇Rφj
a(x;R)〉 ) 0 (A1)

d12(R) )
〈φ1

a(x;R)|∇RHel(x;R)|φ2
a(x;R)〉

E2(R) - E1(R)
(A2)

E1(R) ) Uh (R) - x∆U(R)2 + U12
2(R) (A3)

E2(R) ) Uh (R) + x∆U(R)2 + U12
2(R) (A4)

Uh (R) ) 1
2

(U22(R) + U11(R)) (A5)

∆U(R) ) 1
2

(U22(R) - U11(R)) (A6)

φ1
a(x;R) ) c11(R)φ1

d(x) + c12(R)φ2
d(x) (A7)

φ2
a(x;R) ) c21(R)φ1

d(x) + c22(R)φ2
d(x) (A8)

d12(R) ) 1
E2(R) - E1(R)

{c11(R)c21(R)∇RU11(R) +

c12(R)c22(R)∇RU22(R) + [c11(R)c22(R) +
c12(R)c21(R)]∇RU12(R)} (A9)

g12(R) ) ∇R(E1(R) - E2(R)) (A10)

g12(R) )
2∆U(R)

x∆U(R)2 + U12
2
∇R[U11(R) - U22(R)] (A11)

ẑ ) q × Q
|q × Q| (B1)
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Then pq and pQ can be expressed in terms of these five unit
vectors as

where

We note thatx̂, ŷ, ẑ, X̂, Ŷ, pq, andpQ are all three-vectors. For
a triatomic system in a center-of-mass coordinate system, there
are 6 degrees of freedom. For noncollinear geometries, there
are three vibrational modes, and these modes all lie within the
triatomic plane. These modes constitutepvib, described above,
and they do not contribute to the total angular momentum of
the system. The remaining three degrees of freedom describe
the rotation of the ABC molecule along three different axis,
and they constituteprot. These three modes determine the angular
momentum of the system, and they do not change the internal
coordinates of the system.

The momentum component defined by eq B9 describes the
vibration of the BC bond, and thus, it is one of the components
of pvib. The momentum component defined by eq B12 describes
the vibration of the A-BC bond, and therefore, it too is a
component ofpvib. The momentum components defined by eqs
B10 and B13 describe the motion of theq andQ vectors in a
direction normal to the ABC molecular plane, and they are
therefore components ofprot. Thus, two of the three vibrational
modes and two of the three rotational axes have been specified
by the coordinate system defined by eqs B1-B5 and B8-B13.
There remains one vibrational mode and one rotational axis to
complete the specification ofprot andpvib.

Equations B8 and B11 each describe motion that both
contributes to the total angular momentum and changes the
Jacobi angleø (which is the angle betweenS ands). We take
linear combinations ofpq,xx̂ and pQ,XX̂ to form two new
momenta such that one of them changes the angleø but does
not contribute to the total angular momentum and the other
preserves the angleø and does contribute to the total angular
momentum. These linear combinations are given by

Equation B14 describes the A-BC bend, and eq B15
describes the rotational motion of the ABC molecule in the ABC
plane. Note that whereas the momenta defined in eqs B8-B13
describe independent motion of eitherQ or q and are thus three
vectors, the momenta defined in eqs B14 and B15 describe
concerted motion of bothQ and q and are six vectors. The
momentum described in eq B14, for example, is a combination
of the motion ofq along x̂ with a magnitude ofQ[(Qpq,x -
qpQ,X)/(Q2 + q2)], and the motion ofQ along -X̂ with a
magnitude ofq[(Qpq,x - qpQ,X)/(Q2 + q2)].

We then write

and

Generalization to collinear geometries is straightforward. For
collinear geometries,ŷ ) (Ŷ. We pick two arbitrary unit
vectors,û andv̂, that are orthogonal to each other and toŷ and
Ŷ. Then pq and pQ can be expressed in terms of these unit
vectors as

where

For collinear geometries, there are four vibrational modes. Two
of them are given by eqs B21 and B24, which describe the
vibration of the BC diatom and the vibration of the A-BC bond,
respectively. Using the forms of the momenta suggested by eqs
B14 and B15, we define four new momentum components by
taking linear combinations of the components defined in eqs
B20, B22, B23, and B25:

ŷ ) q
q

(B2)

Ŷ ) Q
Q

(B3)

x̂ ) ẑ × ŷ (B4)

X̂ ) ẑ × Ŷ (B5)

pq ) pq,xx̂ + pq,yŷ + pq,zẑ (B6)

pQ ) pQ,XX̂ + pQ,YŶ + pQ,zẑ (B7)

pq,x ) pq‚x̂ (B8)

pq,y ) pq‚ŷ (B9)

pq,z ) pq‚ẑ (B10)

pQ,X ) pQ‚X̂ (B11)

pQ,Y ) pQ‚Ŷ (B12)

pQ,z ) pQ‚ẑ (B13)

pwŵ )
Qpq,x - qpQ,X

Q2 + q2 (Qx̂
-qX̂ ) (B14)

pWŴ )
qpq,x + QpQ,X

Q2 + q2 (qx̂
QX̂ ) (B15)

pvib ) pQ,Y (0Ŷ )+ pq,y (ŷ0)+
Qpq,x - qpQ,X

Q2 + q2 (Qx̂
-qX̂ ) (B16)

prot ) pQ,z (0ẑ )+ pq,z (ẑ0)+
qpq,x + qpQ,X

Q2 + q2 (qx̂
QX̂ ) (B17)

pq ) pq,uû + pq,yŷ + pq,Vv̂ (B18)

pQ ) pQ,uû + pQ,YŶ + pQ,Vv̂ (B19)

pq,u ) pq‚û (B20)

pq,y ) pq‚û (B21)

pq,V ) pq‚û (B22)

pQ,u ) pQ‚û (B23)

pQ,Y ) pQ‚Ŷ (B24)

pQ,V ) pQ‚v̂ (B25)

pb1
b̂1 )

Qpq,u - qpQ,u

Q2 + q2 (Qû
-qû cosø ) (B26)

pb2
b̂2 )

qpq,u + QpQ,u

Q2 + q2 (qû cosø
Qû ) (B27)

pb3
b̂3 )

Qpq,V - qpQ,V

Q2 + q2 (Qv̂
-qv̂ cosø ) (B28)
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Note that cosø ) (1 for collinear geometries.
We then write

and
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pb4
b̂4 )

qpq,V + QpQ,V

Q2 + q2 (qv̂ cosø
Qv̂ ) (B29)

pvib ) pQ,Y (0Ŷ )+ pq,y (ŷ0)+
Qpq,u - qpQ,u

Q2 + q2 (Qû
-qû cosø )+

Qpq,V - qpQ,V

Q2 + q2 (Qv̂
-qv̂ cosø ) (B16a)

prot )
qpq,u + QpQ,u

Q2 + q2 (qû cosø
Qû )+

qpq,V + QpQ,V

Q2 + q2 (qv̂ cosø
Qv̂ ) (B17a)
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